Convex Optimization: Problem Set 1

February 3, 2026

Some problems borrowed from Optimization course of Daniel Dadush.

1. Recall the definition of convex hull:

N N
conv(S) := {Z)‘ixi |x; € S, > O’Z)‘i = 1}.
i=1 i=1

1. Prove that for finite S C R"™, conv(S) = NkosK where the intersection is over
all closed convex K containing S. Therefore conv(S) is the smallest convex set
containing S.

2. Prove Jensen’s inequality: for convex f : R" — R and input x = sz\il \iX; where
A >0, N =1

f(x) < ZAif(x»-

3. Show that if C C R™ is a compact convex set and f : R™ — R is a convex function
then the supremum of f over C is attained at an extreme point of C.

2. Describe the set of boundary points for the following norm balls, i.e. points not in the
interior. For each boundary point x give the set of supporting hyperplanes at x.

L. By i=={xeR": ||x|[y := >, =] <1}
2. By :={x e R": x|z := /> i 27 <1}

3. B = {x € R": ||x]|00 := maxX;epy |2;| < 1}.

3. For convex closed f: R" — R and x € dom(f):

e Show for any subgradient g € 9df(x), (g,—1) gives a supporting hyperplane at
(x, f(x)) for the epigraph

epi(f) == {(z,1) | f(z) <t}
e Show that g € df(x) gives a supporting hyperplane at z for the sub-level set
L:={yeR"|f(y) < f(z)}.

1



4. Prove Exercise 2.27 in [BV]: Let K C R" be closed, bounded, with non-empty interior,
such that there exists a supporting hyperplane of K at every point of the boundary
x € OK. Show this implies K is convex.

5. Affine and quadratic functions are the most basic convex functions. We will prove some
properties about them:

e Show h : R" — R is convex and concave (i.e. h is convex and —h is convex) iff h
is an affine function, i.e. h(z) = (a,z) + b for a € R",b € R.

o Let G(x) := (x,Qx) + (a,z) + b for symmetric matrix @ € R"*" a € R" b € R.
Show ¢ is convex iff ¢(z) := (z, Qz) is convex. (Hint: use first part)
e Show ¢(x) = (z, Qz) is convex iff
YoeR": (v,Qu) >0,
and similarly show it is strictly convex iff the inequality is strict.

(These conditions are known as positive-semi-definiteness and positive-definiteness,
and are denoted @ = 0,Q > 0.)

e Find the optimizer and optimum value of strictly convex quadratic
q(z) = (z,Q) + (a,z) +b.
6. An Ellipsoid is an affine image of the Euclidean ball
E=c+ AB} where B :={zxeR"||z| <1},

for some ¢ € R"® and A € R™ "™ invertible.

o Let q(z) := (z,Qx) + (d, x) + e be strictly convex. Show any sub-level set
Ly :={x e R" | q(x) <t}
is either empty or an Ellipsoid (i.e. find ¢, A such that L; = ¢ + ABs).

e Conversely, given Ellipsoid £ = ¢+ AB; as above, find convex quadratic g(x) :=
(x,Qx) + (d,z) + e such that

E={xeR"|q(x) <1}.

7. Recall the GLS oracle model for convex sets. Let f : R®™ — R be a convex closed function
with dom(f) = R™. We investigate natural function oracles in terms of the epigraph:

e Show MEM(epi(f)) can be implemented using an EVALuation oracle for f; show
EVAL(f) can be approximately implemented using MEM(epi(f)), i.e. for input
x € R" compute t € R such that |t — f(z)| <e.

e Show SEP(epi(f)) can be implemented using an GRADient (or subgradient) oracle
for f; show GRAD(f) can be approximately implemented using SEP(epi(f)), i.e.
for input z € R™ compute g € R™ such that

Yy eR": f(y) > f(x) —e+ {9,y — x).
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