
Convex Optimization: Problem Set 1

February 3, 2026

Some problems borrowed from Optimization course of Daniel Dadush.

1. Recall the definition of convex hull:

conv(S) :=

{ N∑
i=1

λixi | xi ∈ S, λ ≥ 0,
N∑
i=1

λi = 1

}
.

1. Prove that for finite S ⊆ Rn, conv(S) = ∩K⊇SK where the intersection is over
all closed convex K containing S. Therefore conv(S) is the smallest convex set
containing S.

2. Prove Jensen’s inequality: for convex f : Rn → R and input x =
∑N

i=1 λixi where

λi ≥ 0,
∑N

i=1 λi = 1

f(x) ≤
N∑
i=1

λif(xi).

3. Show that if C ⊆ Rn is a compact convex set and f : Rn → R is a convex function
then the supremum of f over C is attained at an extreme point of C.

2. Describe the set of boundary points for the following norm balls, i.e. points not in the
interior. For each boundary point x give the set of supporting hyperplanes at x.

1. Bn
1 := {x ∈ Rn : ∥x∥1 :=

∑n
i=1 |xi| ≤ 1}

2. Bn
2 := {x ∈ Rn : ∥x∥2 :=

√∑n
i=1 x

2
i ≤ 1}

3. Bn
∞ := {x ∈ Rn : ∥x∥∞ := maxi∈[n] |xi| ≤ 1}.

3. For convex closed f : Rn → R and x ∈ dom(f):

• Show for any subgradient g ∈ ∂f(x), (g,−1) gives a supporting hyperplane at
(x, f(x)) for the epigraph

epi(f) := {(x, t) | f(x) ≤ t}.

• Show that g ∈ ∂f(x) gives a supporting hyperplane at x for the sub-level set

L := {y ∈ Rn | f(y) ≤ f(x)}.
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4. Prove Exercise 2.27 in [BV]: Let K ⊆ Rn be closed, bounded, with non-empty interior,
such that there exists a supporting hyperplane of K at every point of the boundary
x ∈ ∂K. Show this implies K is convex.

5. Affine and quadratic functions are the most basic convex functions. We will prove some
properties about them:

• Show h : Rn → R is convex and concave (i.e. h is convex and −h is convex) iff h
is an affine function, i.e. h(x) = ⟨a, x⟩+ b for a ∈ Rn, b ∈ R.

• Let q̃(x) := ⟨x,Qx⟩ + ⟨a, x⟩ + b for symmetric matrix Q ∈ Rn×n, a ∈ Rn, b ∈ R.
Show q̃ is convex iff q(x) := ⟨x,Qx⟩ is convex. (Hint: use first part)

• Show q(x) = ⟨x,Qx⟩ is convex iff

∀v ∈ Rn : ⟨v,Qv⟩ ≥ 0,

and similarly show it is strictly convex iff the inequality is strict.
(These conditions are known as positive-semi-definiteness and positive-definiteness,
and are denoted Q ⪰ 0, Q ≻ 0.)

• Find the optimizer and optimum value of strictly convex quadratic

q̃(x) := ⟨x,Qx⟩+ ⟨a, x⟩+ b.

6. An Ellipsoid is an affine image of the Euclidean ball

E = c+ ABn
2 where Bn

2 := {x ∈ Rn | ∥x∥2 ≤ 1},
for some c ∈ Rn and A ∈ Rn×n invertible.

• Let q(x) := ⟨x,Qx⟩+ ⟨d, x⟩+ e be strictly convex. Show any sub-level set

Lt := {x ∈ Rn | q(x) ≤ t}
is either empty or an Ellipsoid (i.e. find c, A such that Lt = c+ AB2).

• Conversely, given Ellipsoid E = c + AB2 as above, find convex quadratic q(x) :=
⟨x,Qx⟩+ ⟨d, x⟩+ e such that

E = {x ∈ Rn | q(x) ≤ 1}.

7. Recall the GLS oracle model for convex sets. Let f : Rn → R be a convex closed function
with dom(f) = Rn. We investigate natural function oracles in terms of the epigraph:

• Show MEM(epi(f)) can be implemented using an EVALuation oracle for f ; show
EVAL(f) can be approximately implemented using MEM(epi(f)), i.e. for input
x ∈ Rn compute t ∈ R such that |t− f(x)| ≤ ε.

• Show SEP(epi(f)) can be implemented using an GRADient (or subgradient) oracle
for f ; show GRAD(f) can be approximately implemented using SEP(epi(f)), i.e.
for input x ∈ Rn compute g ∈ Rn such that

∀y ∈ Rn : f(y) ≥ f(x)− ε+ ⟨g, y − x⟩.
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