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1 Preliminaries

e Notation: R for reals, Ry for non-negative reals, and R, for positive reals. [n] = {1,...,n}

for integer intervals. ey, ...,e, € R™ for the standard basis. (z,y) = > i, z;y; for standard

Euclidean inner product, and [|z|3 = (z,z) = Y"1 | 27 for the Euclidean norm.

e Complexity Theory - f < O(g) if there exists ng € N,c € Ry such that for all n > ng :
f(n) < cg(n). We will also use f < g to denote the same thing.

e Topology - open vs closed

Definition 1. S C R" is open if for every point x € S, there is an € > 0 such that the open
ball B°(xz,e) :={y | |ly — x| <e} C S.

S is closed if the complement R™/S is closed; equivalently, if S contains the limit point of
every convergent sequence in S: {xr; € S} = lim;z; € S.

S is compact if it is closed and bounded.
e Differentiability and Taylor approximation

Definition 2. f is differentiable at x in the interior of the domain dom(f)° if all partial
derivatives exist:

D, f(x) := lim flz +tv) - f(x)

t—0 t ’

and further the above limit is a linear function of v.

It is k-times differentiable if all k-th order partial derivates exist, and k-times continuously
differentiable if furthermore the k-th derivative is continuous in a neighborhood of x.

Definition 3. If f is differentiable at x, and an inner product (-,-) is given, then the gradient
V f(z) is uniquely defined by

Yo eR": (Vf(x),v)= %g% f(m+tvt) — /(@) =: Dy f(x).

For the standard inner product, this induces the more familiar definition

(Vf(#))i = O, f ().



Definition 4. Similary, if f is twice-differentiable at x, the Hessian V2f(x) is uniquely
defined by
Vu,v € R":  (u, V2f(x)v) = DyD,f(z).

For the standard inner product, this induces the more familiar definition
(V2f(2))ij = Ou, 0, f ().
e Linear and quadratic functions
Definition 5. An affine function £ : R™ — R is of the form
l(z) = {(a,x)+b

fora e R™", b eR.
A quadratic function q : R™ — R is of the form

q(z) == (z, Az) + (b,z) + ¢
where A € R™ "™ (symmetric matriz without loss of generality), b € R™, ¢ € R.

Definition 6. For once- and twice-differentiable functions f : R™ — R, the linear and
quadratic approrimation at x are

@ (y) = £() + {(VF@)y — ) + 5 ((y — ), V(@) (y - o))

Remark 7. By e.g. intermediate value theorem, the remainder f — £,, f — q, are small in the
neighborhood of x if f is appropriately differentiable at x.

2 Introduction

2.1 Convex Sets
Definition 8. A set C C R? is convex if for all z,y € C and X € [0,1],

Ax+(1-NyeC.

Definition 9. For subset S C R™ we can define the span, affine, and convex hull in terms of linear
combinations as

N
span(S) := {Z a;z; | i € S}
N N
aff(S) == {Z aiTi | ; € szai =1}

N N
conv(S) := {Z a;iz; | z; € S,a >0, Zai =1}



Note conv(S) C aff(S) C span(S). Try to visualize these sets for small examples.
Fact 10. The following operations preserve convezity of sets

e Scalar multiplication: K — cK;

o Addition: K1 + Ko

e Intersection: N; K;

o Affine transform: K — AK + b

2.2 Convex Functions

Definition 11. A function f : RY — R is convex if

fOz+ (1= XNy) < Af(x) + (1 =N f(y)
for all z,y € dom(f) and X € [0, 1].

Here dom(f) is the domain of f, where it is well-defined. E.g. Ry for /= or Ry for log(x).
Function convexity depends on the domain, e.g. \/m is convex for dom = R but not for dom = R.
We can also use the convention that f(x ¢ dom(f)) := 400, which then implies f(Azx+ (1 —\)y) <
M(z) + (1 = N)f(y) for all z,y, with the following arithmetic rules for infinity: 000 = 0,Vs €
Rii:s5-00=00,Vs€R:s+ 00 =o00.

Exercise 1. Verify that f(Az + (1 — N)y) < Af(x) + (1 — N f(y) for all x,y with the extended
arithmetic rules given above iff dom(f) is a convex set.
For conver K C R™ we define the indicator function dx and the support function hx as

0 re K

) = ; h = , ).
k(@) {—i—oo otherwise 2 53}3@ z)

Verify that both of these are convex functions.

Fact 12. The following operations preserve convexity of functions
e Non-negative scalar multiplication: f — cf;
e Addition: fi1 + fo

o Point-wise supremum: sup; fi

Restriction: t — f((1 —t)z +ty) (or more generally a line or subspace).
o Affine transform: x — f(Ax + b)
e Perspective: (z,t) — tf(z/t) fort > 0.

Theorem 13. If f is differentiable, then f is convex iff

Fy) = f@) + (Vi(@),y—a) for all z,y.

Proposition 14. For convex f, x is a local minimum iff it is a global minimum.



Proof: Clearly a global minimum is also a local minimum. For the converse, let € > 0 such
that f(y) > f(z) for all ||y — z||2 < e. Assume for contradiction z is not the global minimum, so
f(zy) < f(x). Then letting x5 := (1 — )x + dxx, by convexity we have

Flzs) < (1= 8)f(2) + 0f(2.) < f(a).
But for small enough § this contradicts local minimality of x.
Definition 15. For f : R™ — R, let the epigraph be
epi(f) :={(z,1) | f(z) <t}
i.e. the "upwards closure’ of the graph of f in R*T1.
Theorem 16. f: R" — R is a closed convex function iff epi(f) C R is a closed conver set.

Proof: First consider f convex, and we want to show epi(f) is a convex set. Let (z,t), (y,s) €
epi(f), which by definition means

Now consider convex combination z := (1 — A\)z + Ay for A € [0,1]. Then by convexity

f(2) <A =N f() + Af(y) < (1 =Nt + As,

where the first step was by convexity of f, and in the second step we used that (z,t), (y, s) € epi(f).
Rewriting this, we have shown

(z, (L =Xt +As) = (1 = N)(z,t) + Ay, s) € epi(f),

which shows epi(f) is a convex set.
For the converse, assume epi(f) is closed and convex. Then for (z, f(x)), (y, f(y)) € epi(f) we
have (z,t) € epi(f) for z:= (1 — N)ax + Ay, t := (1 — A) f(x) + Af(y), which implies

FA =Nz + X y) = f(z) <t = (1= f(z) +Af(y),
verifying convexity of f.
Lemma 17. For convex f: R™ — R and any t € R, the sub-level set
Li(f) :=={z e R" | f(z) <t}

is a convex set. Further, if f(x) =t and f is differentiable at xz, then the gradient V f(x) gives a
supporting hyperplane for the sub-level set L; at x.

Proof: The sub-level set is the projection of the intersection of the epigraph and a halfspace

epi(f) N{(z,5) [ s <t},

and intersection and projection both preserve convexity, so L; is convex.



3 Separation Theorems

3.1 Separating Hyperplane Theorem

Theorem 18. For closed conver K and p € R™ with p & C, there is a separating hyperplane
w € R" satisfying
max{w, ) < b < (w,p).
max(w,z) < b < {w,p)
Proof: The proof plan is simple: let z, := arginf,cx ||z — p||3, then we claim the direction
w = x, — p gives a separating hyperplane.
To show this is well-defined, we reduce to the case of compact K. Take any x¢y € K and consider

L:=Kn{yeK|lly—pl3 < lzo—pl3},

which is convex since K is convex and the second set is the sub-level set of convex function y —
ly — pl|3. Therefore we can assume K is compact and x, = arginf,ck ||z — p||3 is attained by the
extreme value theorem. We can in fact show that the optimizer z, is unique, as || - ||3 is strictly
convex, but we will not need this for the proof.

Now we claim that z, = arg mingeg ||z — p||3 iff Vo € K : (x — 24, 7 — p) > 0. Indeed, we can
rewrite the function difference

2 —pl3 = |zs — plI3 = 2(x — 24, 20 — p) + |2 — 2|13,

as can be verified directly. If the inner product term is > 0 for all z, then since the norm term is
always > 0, we get ||z —p||3 > ||z« —p||3Vx € K. Conversely, if there exists © € K : (x— 4, 7, —p) <
0, then consider z. := (1 — &)z, + ez, which is in K by convexity, and note that

lze = plI3 = lloe = plI3 = 2(2e — 20, 20 = p) + |22 — 25 = €l — 20,20 —p) + %z — 25 <O,

for small enough € > 0, where we used z. — z, = ¢(x — z.), and the last step follows as the inner
product term is negative and therefore dominates the quadratic term for small enough € > 0.
Finally, we verify that w := x, — p gives a separating hyperplane:

(p— T, w) = —|lp — 2|3 <0, Ve e K : (v —as,w) = (T — Xy, x4 —p) >0

which by rearranging gives

ow) < inf (z,w).
(p,w) < (x w>_xng<:v w)

We also get a version for two sets.

Theorem 19. For closed convex C, D C R"™, if they are disjoint C N D = () and one of C or D is
bounded, then there is a separating hyperplane (w,b) € R satisfying

sup(w, z) < b < inf (w, z).
zeC zeD
Proof: Consider K = C'— D and p = 0: there is a hyperplane separating C, D iff there is a
hyperplane separating 0 from C' — D. We need the condition that one of C' or D is bounded in
order for K to be closed.



Remark 20. Both the assumptions (closed and bounded) are necessary for strict separation: open
convez intervals (0,1),(1,2) C R are disjoint but cannot be strictly separated; also {(z,y) | y < 0}
and the epigraph of the function 1/x, both in R? are disjoint closed convex sets that ‘meet at 0o’
and so cannot be strictly separated.

If we only require separation sup,cc(w,z) < infzep(w,x), then some of these technical condi-
tions can be dropped, see [BV Section 2.5] for further discussion.

Corollary 21. For closed conver K C R", recall the support function hy(w) = sup,ex(w,y) as
defined in exercise [l Show

K={zeR"|VweR": (w,z) < sup(w,y) = hx(w)}.
yeK

The proof is left as an exercise, but this result is equivalent to the strong duality result proved
in theorem 24]

3.2 Supporting Hyperplanes
Definition 22. A supporting halfspace H of K C R" at x € 0K satisfies: (1) K C H; (2) x € 0H.

Corollary 23. For every closed convexr K and x € 0K, there is a supporting hyperplane H 2 K
such that x € OH.

Proof: See Theorem 3.1.12 in [Nesterov] and page 51 of [Boyd, Vanderberghe].

Exercise 2 (Exercise 2.27 in BV). K C R" closed with non-empty interior, then K is convex iff
it has a supporting hyperplane at every point of its boundary.

4 Strong Duality
Theorem 24. Closed convexr K C R" is the intersection of all containing halfspaces
K = ﬂHQKH.

Proof: One direction is clear: for x € K, H O K = x € H, so K C NyoxH. For the
converse, consider z ¢ K, then the separating hyperplane theorem [18] gives w € R™ such that

(w, z) >b> sup(w, ).
zeK

So we can consider halfspace H := {x € R" | (w,z) < b}, which contains K and does not contain
z. Therefore z € N> H.
We can also lift this to functions using the epigraph.

Theorem 25. Closed convex proper f :R™ — R is the supremum of all affine minorants

f(x) = sup h(z).

f=h

Here proper means f is never —oo and is not always +oo.



Proof: Recall epi(f) C R" is a closed convex set by theorem so our plan is to reduce this
to strong duality for convex sets shown above. In particular, theorem [24] shows

epi(f) = Nuoepi(r)H,

where the intersection is over halfspaces containing our convex set epi(f).

Now note that f > h <= epi(f) C epi(h) as can be verified directly. (Remark: this statement
is true for all functions, not just convex functions). Next we can see that epi(sup; h;) = N;epi(h;),
i.e. the epigraph of the supremum of functions is the intersection of epigraphs. And finally, we can
compute the epigraph of affine function h(z) = (w,z) — b:

(x,t) € epi(h) <= (w,z) —b<t < ((w,—1),(x,t)) <b.

Therefore epi(h) = H := {(z,t) | ((w, —1), (z,t)) < b}, i.e. epigraphs of affine functions correspond
to halfspaces in R"™! with normal vector of the form (w,—1). Note we could have equivalently
defined the halfspace as

H = {(z,t) | (\Mw, =1), (z,1)) < Ab}

for any A > 0, i.e. it is only the sign of the last coordinate that matters.

With these observations we have reduced our proof to the following: theorem [24] gives that
epi(f) is the intersection of a set of containing halfspaces, and we want to show that it is in fact the
intersection of just those halfspaces with normal vector (w, z) where z < 0. To remove the z > 0
halfspaces, we note that epi(f) is upwards closed, so

sup  ((w, 2), (z,t)) = oo,
(z,t)€epi(f)

as we can take t arbitrarily large. Therefore all containing halfspaces must have z < 0.

In order to remove the z = 0 halfspaces we will need to use the properness assumption. We
claim that there exists some z < 0 halfspace; otherwise if all halfspaces have z = 0 as the last
coordinate, then either there exists f(zx) = —oo, or f(x) = +oo for all points, contradicting
properness. Therefore there exists some containing halfspace Hy := {(x,t) | {(wo, —1), (z,t)) < bo}
such that Hy D epi(f).

Now we show that for any (y,s) € epi(f) i.e. s < f(y) there exists an affine halfspace with
z < 0 that separates this point. By theorem there must exist some separating halfspace; if
z < 0 then we are done; otherwise it is of the form

(w,0), (y.5)) > sup {(w,0), (x,1)).
(z,t)€epi(f)

Now consider normal vector (we, —¢) := (1 — €)(w,0) + e(wp, —1) and note for small enough ¢ we
still have
(e, =2), (1,8 > sup{(we,—2), (2,1),
(x,t)€epi(f)

where we used our containing halfspace Hy := {(z,t) | ((wo, —1), (z,t)) < bp} and convexity of the
support function hepi(s) for the right hand side. Therefore this gives a separating hyperplane with
z < 0, which corresponds to the epigraph of an affine function f > h such that s < h(y), which
proves the statement.



5 First Order Definition of Convexity
Recall that f: R™ — R is differentiable at = € dom(f)° if the limit

i) ()
t—0 t

exists, and further is a linear function of v. Given an inner product, the gradient is defined as

Vo: (Vf(z),v) =1lm flttv) = f(m)

t—0 t

Proposition 26. Let f be differentiable. Then f is convex iff

Y,y f(y) = fz) +(Vf(x),y — ).
We can apply this theory even in the non-differentiable setting.

Definition 27. For f : R™ — R and x € dom(f), the set of subgradients 0f(z) are the elements
g € R™ satisfying
YyeR":  f(y) = f(z)+ {9,y — z).

Note that the set of subgradients is convex: since it is defined by the above inequalities, g, h €
df(x) = (1—N)g+ A h€df(x).

The most important property of convexity, that local minima are global minima, can also be
phrased in terms of first-order information:

Theorem 28. For conver f:R" = R, = arg minyecrn» f(y) is the global minimum iff 0 € Of(x).
For differentiable functions, this is equivalent to V f(x) = 0.

Proof: If x is the global minimum, then

VyeR":  f(y) > f(z) = f(x) +(0,y — ),

i.e. 0 € Of(x) verifies the definition of subgradient.
Conversely, if 0 € 0f(z) then we have

VyeR": fly) = f(z)+ 0,y —z) = f(2),
i.e. x is the global minimum.

Proposition 29. If f is convex, then for every x € dom(f)°, there is a subgradient Of(x) # ().
Conversely, if 0f(x) # 0 for every x € dom(f), then f is conver.

Proof: Follows from exercise [2| applied to the epigraph.

6 Polar Sets and Cones
Definition 30. For convex K C R"™, the polar set is
K°:={yeR"|Vze K:(y,x) <1}

Remark 31. Relate this to the support function as described in exercise [1]



Note that 0 € K° always; and note that K° is a convex set, even if K is not convex.
Theorem 32. If0 € K then K°° = K. More generally,
K°° = conv(K U{0}).

Proof: We focus on the case 0 € int(K) and leave the remainder as an exercise. We first show
K C K°°, so consider z € K; then w € K° = (w,z) <150 sup,cxo(z,w) <1, ie z e (K°)°.

For the converse, we show the contrapositive. So consider y ¢ K, then there is a separating
hyperplane (w,y) > sup,cg(w,z) = hg(w). Since 0 € int(K) we have hi(w) > 0, so W :=
w/hg(w) € K°. But then this shows sup,exo (v, z) > (w,z) > 1ie. = & (K°)°.
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