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1 Preliminaries

• Notation: R for reals, R+ for non-negative reals, and R++ for positive reals. [n] = {1, ..., n}
for integer intervals. e1, ..., en ∈ Rn for the standard basis. ⟨x, y⟩ =

∑n
i=1 xiyi for standard

Euclidean inner product, and ∥x∥22 = ⟨x, x⟩ =
∑n

i=1 x
2
i for the Euclidean norm.

• Complexity Theory - f ≤ O(g) if there exists n0 ∈ N, c ∈ R++ such that for all n ≥ n0 :
f(n) ≤ cg(n). We will also use f ≲ g to denote the same thing.

• Topology - open vs closed

Definition 1. S ⊆ Rn is open if for every point x ∈ S, there is an ε > 0 such that the open
ball B◦(x, ε) := {y | ∥y − x∥2 < ε} ⊆ S.

S is closed if the complement Rn/S is closed; equivalently, if S contains the limit point of
every convergent sequence in S: {xi ∈ S} =⇒ limi xi ∈ S.

S is compact if it is closed and bounded.

• Differentiability and Taylor approximation

Definition 2. f is differentiable at x in the interior of the domain dom(f)◦ if all partial
derivatives exist:

Dvf(x) := lim
t→0

f(x+ tv)− f(x)

t
,

and further the above limit is a linear function of v.

It is k-times differentiable if all k-th order partial derivates exist, and k-times continuously
differentiable if furthermore the k-th derivative is continuous in a neighborhood of x.

Definition 3. If f is differentiable at x, and an inner product ⟨·, ·⟩ is given, then the gradient
∇f(x) is uniquely defined by

∀v ∈ Rn : ⟨∇f(x), v⟩ = lim
t→0

f(x+ tv)− f(x)

t
=: Dvf(x).

For the standard inner product, this induces the more familiar definition

(∇f(x))i = ∂xif(x).
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Definition 4. Similary, if f is twice-differentiable at x, the Hessian ∇2f(x) is uniquely
defined by

∀u, v ∈ Rn : ⟨u,∇2f(x)v⟩ = DuDvf(x).

For the standard inner product, this induces the more familiar definition

(∇2f(x))ij = ∂xi∂xjf(x).

• Linear and quadratic functions

Definition 5. An affine function ℓ : Rn → R is of the form

ℓ(x) = ⟨a, x⟩+ b

for a ∈ Rn, b ∈ R.
A quadratic function q : Rn → R is of the form

q(x) := ⟨x,Ax⟩+ ⟨b, x⟩+ c

where A ∈ Rn×n (symmetric matrix without loss of generality), b ∈ Rn, c ∈ R.

Definition 6. For once- and twice-differentiable functions f : Rn → R, the linear and
quadratic approximation at x are

ℓx(y) := f(x) + ⟨∇f(x), y − x⟩;

qx(y) := f(x) + ⟨∇f(x), y − x⟩+ 1

2
⟨(y − x),∇2f(x)(y − x)⟩.

Remark 7. By e.g. intermediate value theorem, the remainder f − ℓx, f − qx are small in the
neighborhood of x if f is appropriately differentiable at x.

2 Introduction

2.1 Convex Sets

Definition 8. A set C ⊆ Rd is convex if for all x, y ∈ C and λ ∈ [0, 1],

λx+ (1− λ)y ∈ C.

Definition 9. For subset S ⊆ Rn we can define the span, affine, and convex hull in terms of linear
combinations as

span(S) := {
N∑
i

aixi | xi ∈ S};

aff(S) := {
N∑
i

aixi | xi ∈ S,

N∑
i

ai = 1};

conv(S) := {
N∑
i

aixi | xi ∈ S, a ≥ 0,

N∑
i

ai = 1}.
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Note conv(S) ⊆ aff(S) ⊆ span(S). Try to visualize these sets for small examples.

Fact 10. The following operations preserve convexity of sets

• Scalar multiplication: K → cK;

• Addition: K1 +K2

• Intersection: ∩iKi

• Affine transform: K → AK + b

2.2 Convex Functions

Definition 11. A function f : Rd → R is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ dom(f) and λ ∈ [0, 1].

Here dom(f) is the domain of f , where it is well-defined. E.g. R+ for
√
x or R++ for log(x).

Function convexity depends on the domain, e.g.
√
|x| is convex for dom = R+ but not for dom = R.

We can also use the convention that f(x ̸∈ dom(f)) := +∞, which then implies f(λx+(1−λ)y) ≤
λf(x) + (1 − λ)f(y) for all x, y, with the following arithmetic rules for infinity: 0 · ∞ = 0, ∀s ∈
R++ : s · ∞ = ∞,∀s ∈ R : s+∞ = ∞.

Exercise 1. Verify that f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for all x, y with the extended
arithmetic rules given above iff dom(f) is a convex set.

For convex K ⊆ Rn we define the indicator function δK and the support function hK as

δK(x) :=

{
0 x ∈ K

+∞ otherwise
; hK(y) := sup

x∈K
⟨y, x⟩.

Verify that both of these are convex functions.

Fact 12. The following operations preserve convexity of functions

• Non-negative scalar multiplication: f → cf ;

• Addition: f1 + f2

• Point-wise supremum: supi fi

• Restriction: t → f((1− t)x+ ty) (or more generally a line or subspace).

• Affine transform: x → f(Ax+ b)

• Perspective: (x, t) → tf(x/t) for t > 0.

Theorem 13. If f is differentiable, then f is convex iff

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ for all x, y.

Proposition 14. For convex f , x is a local minimum iff it is a global minimum.
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Proof: Clearly a global minimum is also a local minimum. For the converse, let ε > 0 such
that f(y) ≥ f(x) for all ∥y − x∥2 ≤ ε. Assume for contradiction x is not the global minimum, so
f(x∗) < f(x). Then letting xδ := (1− δ)x+ δx∗, by convexity we have

f(xδ) ≤ (1− δ)f(x) + δf(x∗) < f(x).

But for small enough δ this contradicts local minimality of x.

Definition 15. For f : Rn → R, let the epigraph be

epi(f) := {(x, t) | f(x) ≤ t}

i.e. the ’upwards closure’ of the graph of f in Rn+1.

Theorem 16. f : Rn → R is a closed convex function iff epi(f) ⊆ Rn+1 is a closed convex set.

Proof: First consider f convex, and we want to show epi(f) is a convex set. Let (x, t), (y, s) ∈
epi(f), which by definition means

f(x) ≤ t, f(y) ≤ s.

Now consider convex combination z := (1− λ)x+ λy for λ ∈ [0, 1]. Then by convexity

f(z) ≤ (1− λ)f(x) + λf(y) ≤ (1− λ)t+ λs,

where the first step was by convexity of f , and in the second step we used that (x, t), (y, s) ∈ epi(f).
Rewriting this, we have shown

(z, (1− λ)t+ λs) = (1− λ)(x, t) + λ(y, s) ∈ epi(f),

which shows epi(f) is a convex set.
For the converse, assume epi(f) is closed and convex. Then for (x, f(x)), (y, f(y)) ∈ epi(f) we

have (z, t) ∈ epi(f) for z := (1− λ)x+ λy, t := (1− λ)f(x) + λf(y), which implies

f((1− λ)x+ λy) = f(z) ≤ t = (1− λ)f(x) + λf(y),

verifying convexity of f .

Lemma 17. For convex f : Rn → R and any t ∈ R, the sub-level set

Lt(f) := {x ∈ Rn | f(x) ≤ t}

is a convex set. Further, if f(x) = t and f is differentiable at x, then the gradient ∇f(x) gives a
supporting hyperplane for the sub-level set Lt at x.

Proof: The sub-level set is the projection of the intersection of the epigraph and a halfspace

epi(f) ∩ {(z, s) | s ≤ t},

and intersection and projection both preserve convexity, so Lt is convex.
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3 Separation Theorems

3.1 Separating Hyperplane Theorem

Theorem 18. For closed convex K and p ∈ Rn with p ̸∈ C, there is a separating hyperplane
w ∈ Rn satisfying

max
x∈C

⟨w, x⟩ < b < ⟨w, p⟩.

Proof: The proof plan is simple: let x∗ := arg infx∈K ∥x − p∥22, then we claim the direction
w := x∗ − p gives a separating hyperplane.

To show this is well-defined, we reduce to the case of compact K. Take any x0 ∈ K and consider

L := K ∩ {y ∈ K | ∥y − p∥22 ≤ ∥x0 − p∥22},

which is convex since K is convex and the second set is the sub-level set of convex function y →
∥y − p∥22. Therefore we can assume K is compact and x∗ = arg infx∈K ∥x− p∥22 is attained by the
extreme value theorem. We can in fact show that the optimizer x∗ is unique, as ∥ · ∥22 is strictly
convex, but we will not need this for the proof.

Now we claim that x∗ = argminx∈K ∥x− p∥22 iff ∀x ∈ K : ⟨x− x∗, x∗ − p⟩ ≥ 0. Indeed, we can
rewrite the function difference

∥x− p∥22 − ∥x∗ − p∥22 = 2⟨x− x∗, x∗ − p⟩+ ∥x− x∗∥22,

as can be verified directly. If the inner product term is ≥ 0 for all x, then since the norm term is
always ≥ 0, we get ∥x−p∥22 ≥ ∥x∗−p∥22∀x ∈ K. Conversely, if there exists x ∈ K : ⟨x−x∗, x∗−p⟩ <
0, then consider xε := (1− ε)x∗ + εx, which is in K by convexity, and note that

∥xε − p∥22 − ∥x∗ − p∥22 = 2⟨xε − x∗, x∗ − p⟩+ ∥xε − x∗∥22 = ε⟨x− x∗, x∗ − p⟩+ ε2∥x− x∗∥22 < 0,

for small enough ε > 0, where we used xε − x∗ = ε(x − x∗), and the last step follows as the inner
product term is negative and therefore dominates the quadratic term for small enough ε > 0.

Finally, we verify that w := x∗ − p gives a separating hyperplane:

⟨p− x∗, w⟩ = −∥p− x∗∥22 < 0, ∀x ∈ K : ⟨x− x∗, w⟩ = ⟨x− x∗, x∗ − p⟩ ≥ 0

which by rearranging gives
⟨p, w⟩ < ⟨x∗, w⟩ ≤ inf

x∈K
⟨x,w⟩.

We also get a version for two sets.

Theorem 19. For closed convex C,D ⊆ Rn, if they are disjoint C ∩D = ∅ and one of C or D is
bounded, then there is a separating hyperplane (w, b) ∈ Rn+1 satisfying

sup
x∈C

⟨w, x⟩ < b < inf
x∈D

⟨w, x⟩.

Proof: Consider K = C − D and p = 0: there is a hyperplane separating C,D iff there is a
hyperplane separating 0 from C − D. We need the condition that one of C or D is bounded in
order for K to be closed.
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Remark 20. Both the assumptions (closed and bounded) are necessary for strict separation: open
convex intervals (0, 1), (1, 2) ⊆ R are disjoint but cannot be strictly separated; also {(x, y) | y ≤ 0}
and the epigraph of the function 1/x, both in R2 are disjoint closed convex sets that ‘meet at ∞’
and so cannot be strictly separated.

If we only require separation supx∈C⟨w, x⟩ ≤ infx∈D⟨w, x⟩, then some of these technical condi-
tions can be dropped, see [BV Section 2.5] for further discussion.

Corollary 21. For closed convex K ⊆ Rn, recall the support function hK(w) := supy∈K⟨w, y⟩ as
defined in exercise 1. Show

K = {x ∈ Rn | ∀w ∈ Rn : ⟨w, x⟩ ≤ sup
y∈K

⟨w, y⟩ = hK(w)}.

The proof is left as an exercise, but this result is equivalent to the strong duality result proved
in theorem 24.

3.2 Supporting Hyperplanes

Definition 22. A supporting halfspace H of K ⊆ Rn at x ∈ ∂K satisfies: (1) K ⊆ H; (2) x ∈ ∂H.

Corollary 23. For every closed convex K and x ∈ ∂K, there is a supporting hyperplane H ⊇ K
such that x ∈ ∂H.

Proof: See Theorem 3.1.12 in [Nesterov] and page 51 of [Boyd, Vanderberghe].

Exercise 2 (Exercise 2.27 in BV). K ⊆ Rn closed with non-empty interior, then K is convex iff
it has a supporting hyperplane at every point of its boundary.

4 Strong Duality

Theorem 24. Closed convex K ⊆ Rn is the intersection of all containing halfspaces

K ≡ ∩H⊇KH.

Proof: One direction is clear: for x ∈ K,H ⊇ K =⇒ x ∈ H, so K ⊆ ∩H⊇KH. For the
converse, consider z ̸∈ K, then the separating hyperplane theorem 18 gives w ∈ Rn such that

⟨w, z⟩ > b > sup
x∈K

⟨w, x⟩.

So we can consider halfspace H := {x ∈ Rn | ⟨w, x⟩ ≤ b}, which contains K and does not contain
z. Therefore z ̸∈ ∩H⊇KH.

We can also lift this to functions using the epigraph.

Theorem 25. Closed convex proper f : Rn → R is the supremum of all affine minorants

f(x) = sup
f≥h

h(x).

Here proper means f is never −∞ and is not always +∞.
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Proof: Recall epi(f) ⊆ Rn is a closed convex set by theorem 16, so our plan is to reduce this
to strong duality for convex sets shown above. In particular, theorem 24 shows

epi(f) = ∩H⊇epi(f)H,

where the intersection is over halfspaces containing our convex set epi(f).
Now note that f ≥ h ⇐⇒ epi(f) ⊆ epi(h) as can be verified directly. (Remark: this statement

is true for all functions, not just convex functions). Next we can see that epi(supi hi) = ∩iepi(hi),
i.e. the epigraph of the supremum of functions is the intersection of epigraphs. And finally, we can
compute the epigraph of affine function h(x) = ⟨w, x⟩ − b:

(x, t) ∈ epi(h) ⇐⇒ ⟨w, x⟩ − b ≤ t ⇐⇒ ⟨(w,−1), (x, t)⟩ ≤ b.

Therefore epi(h) = H := {(x, t) | ⟨(w,−1), (x, t)⟩ ≤ b}, i.e. epigraphs of affine functions correspond
to halfspaces in Rn+1 with normal vector of the form (w,−1). Note we could have equivalently
defined the halfspace as

H = {(x, t) | ⟨λ(w,−1), (x, t)⟩ ≤ λb}

for any λ > 0, i.e. it is only the sign of the last coordinate that matters.
With these observations we have reduced our proof to the following: theorem 24 gives that

epi(f) is the intersection of a set of containing halfspaces, and we want to show that it is in fact the
intersection of just those halfspaces with normal vector (w, z) where z < 0. To remove the z > 0
halfspaces, we note that epi(f) is upwards closed, so

sup
(x,t)∈epi(f)

⟨(w, z), (x, t)⟩ = ∞,

as we can take t arbitrarily large. Therefore all containing halfspaces must have z ≤ 0.
In order to remove the z = 0 halfspaces we will need to use the properness assumption. We

claim that there exists some z < 0 halfspace; otherwise if all halfspaces have z = 0 as the last
coordinate, then either there exists f(x) = −∞, or f(x) = +∞ for all points, contradicting
properness. Therefore there exists some containing halfspace H0 := {(x, t) | ⟨(w0,−1), (x, t)⟩ ≤ b0}
such that H0 ⊇ epi(f).

Now we show that for any (y, s) ̸∈ epi(f) i.e. s < f(y) there exists an affine halfspace with
z < 0 that separates this point. By theorem 18, there must exist some separating halfspace; if
z < 0 then we are done; otherwise it is of the form

⟨(w, 0), (y, s)⟩ > sup
(x,t)∈epi(f)

⟨(w, 0), (x, t)⟩.

Now consider normal vector (wε,−ε) := (1 − ε)(w, 0) + ε(w0,−1) and note for small enough ε we
still have

⟨(wε,−ε), (y, s)⟩ > sup
(x,t)∈epi(f)

⟨(wε,−ε), (x, t)⟩,

where we used our containing halfspace H0 := {(x, t) | ⟨(w0,−1), (x, t)⟩ ≤ b0} and convexity of the
support function hepi(f) for the right hand side. Therefore this gives a separating hyperplane with
z < 0, which corresponds to the epigraph of an affine function f ≥ h such that s < h(y), which
proves the statement.
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5 First Order Definition of Convexity

Recall that f : Rn → R is differentiable at x ∈ dom(f)◦ if the limit

lim
t→0

f(x+ tv)− f(x)

t

exists, and further is a linear function of v. Given an inner product, the gradient is defined as

∀v : ⟨∇f(x), v⟩ = lim
t→0

f(x+ tv)− f(x)

t
.

Proposition 26. Let f be differentiable. Then f is convex iff

∀x, y : f(y) ≥ f(x) + ⟨∇f(x), y − x⟩.

We can apply this theory even in the non-differentiable setting.

Definition 27. For f : Rn → R and x ∈ dom(f), the set of subgradients ∂f(x) are the elements
g ∈ Rn satisfying

∀y ∈ Rn : f(y) ≥ f(x) + ⟨g, y − x⟩.

Note that the set of subgradients is convex: since it is defined by the above inequalities, g, h ∈
∂f(x) =⇒ (1− λ)g + λh ∈ ∂f(x).

The most important property of convexity, that local minima are global minima, can also be
phrased in terms of first-order information:

Theorem 28. For convex f : Rn → R, x = argminy∈Rn f(y) is the global minimum iff 0 ∈ ∂f(x).
For differentiable functions, this is equivalent to ∇f(x) = 0.

Proof: If x is the global minimum, then

∀y ∈ Rn : f(y) ≥ f(x) = f(x) + ⟨0, y − x⟩,

i.e. 0 ∈ ∂f(x) verifies the definition of subgradient.
Conversely, if 0 ∈ ∂f(x) then we have

∀y ∈ Rn : f(y) ≥ f(x) + ⟨0, y − x⟩ = f(x),

i.e. x is the global minimum.

Proposition 29. If f is convex, then for every x ∈ dom(f)◦, there is a subgradient ∂f(x) ̸= ∅.
Conversely, if ∂f(x) ̸= ∅ for every x ∈ dom(f), then f is convex.

Proof: Follows from exercise 2 applied to the epigraph.

6 Polar Sets and Cones

Definition 30. For convex K ⊆ Rn, the polar set is

K◦ := {y ∈ Rn | ∀x ∈ K : ⟨y, x⟩ ≤ 1}.

Remark 31. Relate this to the support function as described in exercise 1.
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Note that 0 ∈ K◦ always; and note that K◦ is a convex set, even if K is not convex.

Theorem 32. If 0 ∈ K then K◦◦ = K. More generally,

K◦◦ = conv(K ∪ {0}).

Proof: We focus on the case 0 ∈ int(K) and leave the remainder as an exercise. We first show
K ⊆ K◦◦, so consider x ∈ K; then w ∈ K◦ =⇒ ⟨w, x⟩ ≤ 1 so supw∈K◦⟨x,w⟩ ≤ 1, i.e. x ∈ (K◦)◦.

For the converse, we show the contrapositive. So consider y ̸∈ K, then there is a separating
hyperplane ⟨w, y⟩ > supx∈K⟨w, x⟩ = hK(w). Since 0 ∈ int(K) we have hK(w) > 0, so w :=
w/hK(w) ∈ K◦. But then this shows supv∈K◦⟨v, x⟩ ≥ ⟨w, x⟩ > 1 i.e. x ̸∈ (K◦)◦.
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